ハードプローブの最先端

鳥井 久行 (東大CNS) Heavy Ion Café/Pub 合同研究会 「QCD物質の最先端」 at 名古屋大学

Contents

- 1. 実験サマリー
 - 驚くべきことに、今QMで全ての実験結果が統一の見解 を出してきた。実験結果サマリーを兼ねて。
 - ジェット測定の実験的困難。本当は大変。

2. クエンチングの仕組み

- pQCDの破綻危機?
- 3. パートン同定が鍵となるか?
 - クォークかグルーオンか?
 - リッジはfluctuationなんかじゃない(by STAR)?
 - QGPの再加熱は見えている?
- 4. low-pTハドロンRAAの謎
 - Photon v2について、

Contents

1. 実験サマリー

- 驚くべきことに、今QMで全ての実験結果が統一の見解 を出してきた。実験結果サマリーを兼ねて。
 - ジェット測定の実験的困難。本当は大変。

2. クエンチングの仕組み

- pQCDの破綻危機?
- 3. パートン同定が鍵となるか?
 - クォークかグルーオンか?
 - リッジはfluctuationなんかじゃない(by STAR)?
 - QGPの再加熱は見えている?
- 4. low-pTハドロンRAAの謎
 - Photon v2について、

実験サマリー: Single Particle

- Direct photon, ZOはクエンチしていない (CMS)
 Ncoll scalingが正しい。
- 8GeV/c(LHC)以上から上昇 (CMS/ALICE/ATLAS)
 RAA(100GeV/c) = ~0.5、後述するJet RAAと同じ

実験サマリー:Identified Hadron

- RHICとLHCで8GeV/c以上では同じ
 温度、密度への依存性は少ない
- 8GeV/c(LHC)以上でRAAは粒子種非依存(LHCで初)
- 2GeV/cのピークは大きく違う。(最後の方でコメントします)

実験サマリー:γ-hadron or jet-hadron

- Fragmentation Functionの測定
- Away-sideハドロンの収量DAA=0.5 - Jet RAAと同じ

実験サマリー: Single Jet RAA/RCP

- RAA=0.5
 - Cu+Cu@RHICとPb+Pb@LHCで同じ=温度、密度への依存性は少ない

No strong modification of fragmentation functions between peripheral and central: surprising in a radiative energy loss scenario?

26

- ジェット(ハードコア)内の構造は変化なし: p+p = A+Au
 - ・ 縦、横方向共に。
 - まるで真空中(p+p)で破砕化しているかのよう。

No Stronger angular deflection!!!→ソフトグルーオン

ジェット測定の実験的困難

- バックグラウンド粒子=1GeV/個 x 600(RHIC)/1600(LHC)個(central)
- R<0.4の範囲内に40GeV(RHIC) or 100GeV(LHC)のバックグラウンド

- ・ 当然バックグラウンドよりも小さいジェットは測定が困難。バックグラウンドの fluctuationの補正が重要。
 ⇔ Leading Hadronは見つけやすい。
- ・ 失われたエネルギー(数+GeVがR>0.8の範囲)はバックグラウンドに埋れている
 →バックグラウンドと失われたエネルギー、全て(荷電のみ)を用いて、エネル ギーバランスがどう変化するかを調べる。

$$p_T^{||} \equiv \sum_{\text{tracks}} -p_{\text{T,track}} \cos(\phi_{\text{track}} - \phi_{\text{leading jet}})$$

11

Jet Algorithm

O. Kodolova, I. Vardanian, A. Nikitenko et al., Eur. Phys. J. C50 (2007)

Jet Reconstruction Efficiency

Anti-kt R = 0.4, jet reconstruction efficiency

 truth match ΔR < 0.2

What did we learn from Jet?

No angle deflection (CMS, ATLAS) Lesson3: 真空中と同じようにフラグメントする。(pT>8GeV/c@LHC) No change in lateral and longitudinal shape (ATLAS/CMS) →破砕化は外で

No change in lateral and longitudinal shape (ATLAS/CMS) → 破砕 Lesson4: 失われたエネルギーは外側へ(R>0.8) → 再加 <8GeVでソフト粒子生成(CMS/STAR)

→再加熱?マッハコーン?。

Contents

 – 驚くべきことに、今QMで全ての実験結果が統一の見解 を出してきた。実験結果サマリーを兼ねて。

 – ジェット測定の実験的困難。本当は大変。

2. クエンチングの仕組み

1. 実験サマリー

- pQCDの破綻危機?

- 3. パートン同定が鍵となるか?
 - クォークかグルーオンか?
 - リッジはfluctuationなんかじゃない(by STAR)?
 - QGPの再加熱は見えている?
- 4. low-pTハドロンRAAの謎
 - Photon v2について、

エネルギー減衰モデル

- 様々なモデル

 平均自由行程<->Lとの関係の違い: thin or thick?
 - collisional energy loss を含めるか?MCへの組み込み。
- Radiative energy loss
 - Multiple soft scattering
 - BDMPS (LPM) or AMY
 - Few hard scattering
 - _ BGLV, Higher-twist framwork _
- Collisional energy loss
 - Full calculation including the running of alpha_S
- Radiative or collisional energy loss
 - 今QMでも片方だけで実験を説明するトークあり。
 - 多分両方取り入れて比較していくのが正しいのでは?

距離依存性(path length dependence)

WAH and M Gyulassy, arXiv:1104.4958

- 距離依存が大きい効果?

PATHLENGTH DEPENDENCE OF ENERGY LOSS

model	elastic L	radiative L^2	AdS L^3	rad. finite E	min. Q_0
3+1d ideal	fails	works	fails	fails	works
2+1d ideal	fails	fails	marginal	fails	not tested
2+1d vCGC	fails	marginal	works	fails	not tested
2+1d vGlb	fails	marginal	works	fails	not tested

- quantum coherence is an important part of the answer
- finite energy corrections need to be taken seriously!
- ightarrow quite possibly they destroy the success of L^2 and maybe also L^3
- \rightarrow quite possibly other existing shower codes do not reproduce pathlength dependence
- \bullet strong constraints on **combinations** of hydro + parton-medium interaction model
- I_{AA} provides additional constraints for shower evolution

T. R., Phys. Rev. C83 (2011) 024908; J. Auvinen, K. J. Eskola, H. Holopainen, T. R., Phys. Rev. C82 (2010) 051901; T. R., H. Holopainen, U. Heinz, C. Shen, Phys. Rev. C83 (2011) 014910.

pQCDの危機

v_2 data favors d*E*/dx ~ I^3 (like AdS/CFT)

結論にはまだ早い

Radiative energy loss (slightly) undershoot data

• Don't draw premature conclusions because of a (dis)agreement !

Francois Arleo (LAPTH)	Quenching from RHIC to LHC	Quark Matter 2011

(a) (B) (E) (E) (E)

Contents

1. 実験サマリー

- 驚くべきことに、今QMで全ての実験結果が統一の見解 を出してきた。実験結果サマリーを兼ねて。
 - ジェット測定の実験的困難。本当は大変。

2. クエンチングの仕組み

- pQCDの破綻危機?

- 3. パートン同定が鍵となるか?
 - クォークかグルーオンか?
 - リッジはfluctuationなんかじゃない(by STAR)?
 - QGPの再加熱は見えている?
- 4. low-pTハドロンRAAの謎
 - Photon v2について、

パートンIDが解決への糸口?

グルーオンがリッジの元?(by STAR)

- Consistent with previous results but that is a function of projection range!
- Does not reveal entire structure

 $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$

- $\Delta\eta$ reveals rich trigger PID dependent structure:
 - Higher jet-like amplitude for pions
 - Ridge predominantly contributed by nonpion-triggered events

リッジというより失われたエネル ギーがR>0.8に表れている、と見 るべき。(by Hisa Torii)

リッジは|Δη|<5まで広い

TWO-PARTICLE CORRELATIONS

(PHOBOS, Phys. Rev. C75(2007)054913)

MATT LUZUM	(IPHT)
------------	--------

FLOW FLUCTUATIONS

QUARK MATTER 2011 4/13

= n a a 27

直接光子tagged-クォークジェット

- クォーク or グルーオンの違いは統計的な有利で明らかではない。
 - 直接光子のAway-side クォーク:90%
 - Pi0のAway-side グルーオン:70%(?)
- 従来の測定を失われたエネルギーが現れる領域で測定。
 - HBT radius, chemical temperature by particle ratio, thermal photon
 - Leading Jet axis、direct photon axisからの角度依存性

Contents

- 1. 実験サマリー
 - 驚くべきことに、今QMで全ての実験結果が統一の見解 を出してきた。実験結果サマリーを兼ねて。
 - ジェット測定の実験的困難。本当は大変。
- 2. クエンチングの仕組み
 - pQCDの破綻危機?
- 3. パートン同定が鍵となるか?
 - クォークかグルーオンか?
 - リッジはfluctuationなんかじゃない(by STAR)?
 QGPの再加熱は見えている?
- 4. low-pTハドロンRAAの謎
 - Photon v2について、

Low-pT RAAの謎 reaction plane dependent *R_{AA}*

$$R_{AA}(\varphi) = R_{AA}(1 + 2v_2 \cos(2\varphi))$$

Talk: A Dobrin

All you want is on your head!!!

Direct Photon Excess in Au+Au

- Direct photon excess above p +p spectrum
- Exponential (consistent with thermal)
- Inverse slope = 220 ± 20 MeV
 - T_i from hydro
 - 300 . . . 600 MeV
 - Depending on thermalization time

Direct Photon v₂

 direct photon v₂ large (~15 %) at p_T = 2.5 GeV
 v₂ → 0 where prompt photons dominate

熱光子放射v2はハドロンv2と同じ程度 ⇒系発展の後半で放射 同様の解析をJet軸angle依存で?再加 熱への道筋?