post-QM 2014 meeting @Nagoya Soft region

A-A collisions

✓ Direct photon

✓ Shape engineering

p(d)-A collisions ✓ v_n measurement Sanshiro Mizuno University of Tsukuba, RIKEN 06/06/2014

A-A collisions

Excess of Direct Photon Yield

post-QM (soft)

ATTER

2014

External photon conversion method achieved to measure 0.4-5.0 GeV/c and several centralities. Lower p_T limit is extended.

Enhancements are observed.

It is found that the shape of spectra in Au+Au doesn't depend on centrality.

Non-Zero Direct Photon v₃

Non-zero positive v_3 is observed in all centrality, as seen in v_2 . Their strengths are comparable with hadron.

They are expected to constrain photon production mechanism.

2014

Event Shape Engineering 1

DARMSTADT 2014

$$Q_{2,x} = \sum w_i \cos(2\phi_i)$$

$$Q_{2,y} = \sum w_i \sin(2\phi_i)$$

$$Q_{2,raw} = \sqrt{Q_{2,x}^2 + Q_{2,y}^2} / \sqrt{\sum w_i}$$

$$Q_2 \sim Q_{2,raw} / < Q_{2,raw} >$$

 Q_2 is a sort of the strength of v_2 and selected in forward rapidity. $|\eta| = 1^2.8$

Multiplicity and initial geometry are restricted in forward rapidity and v_2 and final eccentricity are measured in mid-rapidity.

v_2 and $\varepsilon_2^{\text{fin.}}$ in mid-rapidity ($|\eta| < 0.35$)

 v_2 and final eccentricity($\epsilon_2^{\text{fin.}}$) in mid-rapidity are changed with Q_2 selection in forward rapidity.

High Q_2 -> High v_2 & High $\varepsilon_2^{\text{fin.}}$ --- High $\varepsilon_2^{\text{ini.}}$?

XXIV QUARK MATTER

DARMSTADT 2014

Event Shape Engineering 2

 q_2 is observed v_2 in FCal (3.2< $|\eta|$ <4.9).

It is expected to reveal hidden initial geometry effect.

v_m-v₂ Correlation Without q₂ selection

v_4 - v_2 correlation with q_2 selection

Non-Linear & Linear v₄ Component

Correlated v_4 gradually increases and overtakes at around N_{part} ~120.

p(d)-A collisions

p(d)-A Collisions

Long range near-side ($\Delta \phi \sim 0$) ridge have been observed in pPb. v_n components are extracted.

post-QM (soft)

XXIV QUARK MATTER

Extraction v_n component

post-QM (soft)

XXIV QUARK MATTER

v_{n(2-5)} measurement in pPb

DARMSTADT 2014

14

Comparison N_{part} **Dependence**

post-QM (soft)

There are deviation in v_2 while v_3 are comparable. Eccentricity and triangularity study are needed.

2014

STADT

15

η Dependence In v_2

 v_2 in Pb-going is slightly larger than v_2 in p-going. This could be related with higher particle densities.

Collective Flow In pPb?

Mass ordering is observed in low p_T , it is similar to the trend in PbPb. Mesons and baryon cross at about 2GeV/c.

Collective flow exists?

2014

STA

ATTER

Collective Flow In dAu?

Ridge like structure is seen around $\Delta \phi \sim 0$.

DARMSTADT

2014

Mass ordering is observed in low p_T , and they cross at around 2GeV/c. Collective flow exists??

Mass Ordering In v₃??

It is observed that v_3 has mass ordering in low p_T and they cross at around 2.0 GeV/c. Collective flow exists???

post-QM (soft)

XXIV QUARK MATTER

Mass ordering in pp???

ALI-PREL-61155

Mass ordering is observed in pp collisions, but they don't cross as it is found in PbPb and pPb collisions.

Mass ordering indicates that collective flow exists????

Summary

A-A collisions

Direct photon study

The shape of yield in AuAu doesn't depend on centrality. Non-zero v_3 is observed.

• Event shape engineering

 Q_2 selection helps to handle event selection. v_4 is divided into linear and non-linear components.

p(d)-A collisions

Near side ridge is studied by measuring v_n. N_{part}, η and particle species dependence are measured. Mass ordering is observed in pPb and dAu.

Other Measurements

Direct photon Excess Yield Study

arXiv:1405.3940

Distribution After subtraction of yield in The amount of excess direct photon yield scaled pp from yield in AuAu (a) $T_{\text{eff}} = (239 \pm 25 \pm 7) \,\text{MeV}/c^{\frac{1}{2}}$ (b) $T_{\text{eff}} = (260 \pm 33 \pm 8) \,\text{MeV}/c^{\frac{1}{2}}$ 101 10¹ $rac{1}{2\pi p_T}rac{\mathrm{d}^2N}{\mathrm{d}p_T\mathrm{d}y}[(\mathrm{GeV}/c)^{-2}]$ 100 Au+Au 10^{-1} $\sqrt{s_{\rm NN}} = 200 \,{\rm GeV}$ 10^{-2} 10^{0} 10^{-3} 10-ইকি 10-0-20% 20-40% 10^{-1} $T_{\rm eff} = (225 \pm 28 \pm 6) \,{\rm MeV}/c$ (d) $T_{\rm eff} = (238 \pm 50 \pm 6) \,{\rm MeV}/c$ (c) 10 100 10^{-2} 10^{-1} $p_T > 0.4 \,{\rm GeV}/c$ \downarrow $p_T > 1.0 \,{\rm GeV}/c$ 10^{-2} $p_T > 0.6 \,{\rm GeV}/c$ $p_T > 1.2 \,{\rm GeV}/c$ $p_T > 0.8 \,{\rm GeV}/c$ | $p_T > 1.4 \,{\rm GeV}/c$ 10^{-3} 10^{-3} 10^{-4} 10^{2} 10^{-5} N_{part} 60-92% 2 $p_T [\text{GeV}/c]$ $Ae^{-p_T/T_{eff}}$ $F = AN_{part}^{\alpha}$

XXIV QUARK MATTER DARMSTADT 2014

v_m-q₂ Correlation

$v_2 - v_2$ Correlation with q_2 selection

Non-trivial dependence with centrality (boomerang)

Linear dependence within one centrality

XXIV QUARK MATTER

DARMSTADT 2014

Indicates that viscous correction mostly controlled by size, not shape.

$v_3 - v_2$ correlation with q_2 selection

 v_3 has linear and anti-correlation with v_2 . These measurement can constrain initial geometry models.

JARK MATTER

Multiplicity in PbPb and pPb

post-QM (soft)

XXIV QUARK MATTER

2PC distribution

They are 2PC distribution after subtraction of distribution in peripheral. The region in $|\Delta\eta|$ >0.8 are fitted and v_n are extracted.

$$v_n^h\{2PC\} = \sqrt{V_{n\Delta}^{h-h}} \qquad v_n^i\{2PC\} = V_{n\Delta}^{h-i}\sqrt{V_{n\Delta}^{h-h}}$$