Summary of small System 関口 裕子(東大CNS)

Outline

- Strangeness —> strangeness enhancement?
- Resonances —> dynamics of hadronic medium?
- PID vn -> collectivity?
- vn vs. collision geometry —> initial conditions?
- Multi particle cumulant -> initial or final?
- Symmetric cumulant -> initial or final?
- Ridge in ee collisions —> thermalization/collectivity in ee?

Strangeness production relative to pion

Wrap up of measurements available so far: new results from LHC-Run2 for **pp collisions at 13 TeV** and **Xe-Xe collisions at 5.44 TeV** • High precision measurement at the LHC in fair agreement with STAR results at high multiplicity

אאן

- Only multiplicity plays a role? neither energy nor system dependence observed
- Measurements in small system at RHIC could help to understand the experimental hints

Baryon to meson ratio

ALI-PREL-135238

Multiplicity dependence of particle ratio

- Results of $\phi/K, \Lambda^*/\Lambda, \Sigma^*/\Lambda$ are flat.
- No re-scattering or regeneration.
- K^{0*}/K decrease as dN_{ch}/ dη increase in pp and pPb.

▶ Re-scattering?

postQM@Nagoya University,Jun 30th

Special role of Φ-meson

- ϕ /K: Flat or slightly increasing. S<1?
- Ξ/ϕ :flat S~2 or slightly increasing in pp and pPb. S<2?
 - According to the results, ϕ behaves as 1<S<2?

PID v₂ in pPb

ALI-PREL-156487

- New: v_2 of ϕ , Ξ , Ω , D in pPb.
- Mass ordering at low pT.
- Baron/meson grouping at intermediate p_T.

PID v₂ in small systems in RHIC

Mass ordering at low pt.

Not significant in p-Au

NCQ scaling

ALI-PREL-156557

Light and strange hadrons follows NCQ scaling.

$D^0 v_2$ in pPb

- $D^0 v_2$ follows NCQ scaling as light hadrons in PbPb.
 - Charm quark may achieve thermalization.
- $D^0 v_2$ is smaller than light hadrons in pPb.
 - Less flow because system size is small or other?

Heavy flavor v₂ in RHIC

- RdA: enhancement in Au going, which suppression in d going.
- Similar magnitude to charged hadrons.

$J/\Psi v_2$ in pPb

postQM@Nagoya University,Jun 30th

d+Au?

Multi particle cumulant

How do we calculate observables

$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{m-particle correlation} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \end{array} \\ \end{array} $	$\begin{array}{l} \textbf{step 2} \qquad \textbf{m-particle cumulant} \\ c_n \{2\} = \langle \langle 2 \rangle \rangle_n \\ c_n \{4\} = \langle \langle 4 \rangle \rangle_n - 2 \cdot \langle \langle 2 \rangle \rangle_n^2 \\ c_n \{6\} = \langle \langle 6 \rangle \rangle - 9 \cdot \langle \langle 2 \rangle \rangle \cdot \langle \langle 4 \rangle \rangle + 12 \cdot \langle \langle 2 \rangle \rangle^3 \\ c_n \{8\} = \langle \langle 8 \rangle \rangle - 16 \cdot \langle \langle 6 \rangle \rangle \langle \langle 2 \rangle \rangle - 18 \cdot \langle \langle 4 \rangle \rangle^2 \\ + 144 \cdot \langle \langle 4 \rangle \rangle \langle \langle 2 \rangle \rangle^2 - 144 \cdot \langle \langle 2 \rangle \rangle^4 \end{array}$
$\begin{aligned} & \text{flow coefficients} & \text{step} \\ & v_n\{2\} = \sqrt{c_n\{2\}} & v_n\{6\} = \sqrt[6]{\frac{1}{4}c_n\{6\}} \\ & v_n\{4\} = \sqrt[4]{-c_n\{4\}} & v_n\{8\} = \sqrt[8]{-\frac{1}{33}c_n\{8\}} \end{aligned}$	3 $ \begin{bmatrix} v_n \{2\}^2 = \langle v_n \rangle^2 + \sigma_n^2 \\ v_n \{4\}^2 = \langle v_n \rangle^2 - \sigma_n^2 \end{bmatrix} v_n \{2\} > v_n \{4\} $ Gaussian fluctuations \rightarrow $ v_n \{4\} = v_n \{6\} = v_n \{8\} $

v₂, v₃ with Multi-Particle cumulant

 v2 with multi particle decrease as multiplicity increase in pPb. Different trend to PbPb.

• $v_2\{2\} > v_2\{4\} \gtrsim v_2\{6\} \gtrsim v_2\{8\}$ Non-Gaussian fluctuation??

- First measurement of v₃{4} in small system
 - Hydro calculation describe data.(arXiv:1405.3976)

Ratio of v_n {4} and v_n {2}

- v_2 {4}/ v_2 {2} is larger than v_3 {4}/ v_3 {4} in PbPb
 - Global geometry dominant for $v_{\rm 2}$
- v_3 {4}/ v_3 {4} is comparable with v_2 {4}/ v_2 {2} in pPb
 - initial state fluctuation dominant both for v_2 and v_3
- TRENTo ε_n {4}/ ε_n {2} describe pPb data

C_{2} {4} in RHIC

- Positive c_{2} {4} in p+Au, while negative in d+Au.
- If fluctuation σv_2 > mean v_2 , c_2 {4} is positive.
 - non-flow?

Multi-particle correlations in d+Au

Symmetric cumulant

• Symmetric cumulant

 $SC(n,m) = \left\langle v_n^2 v_m^2 \right\rangle - \left\langle v_n^2 \right\rangle \left\langle v_m^2 \right\rangle$

 Sensitive to IS fluctuation and medium transport coefficient.
 PRL (2018)120, 092301

SC(2,4) is correlated and SC(2,3) is anti-correlated in PbPb
 Non-flow effect is large in pp and pPb.

Sub-event multi-particle cumulant

Sub-event Cumulant

- 3sub method largely suppress non-flow in pp and low multiplicity events in pPb.
- Significant negative c₂{4} by using 3 sub method in pp.
 - Update from previous QM.

Correlation between harmonics

- Non-flow suppressed at low multiplicity by using subevent cumulant in pp and pPb.
- Sub-event results of SC(2,3) and SC(2,4) are comparable in pp.
- SC(2,3) to converge at high multiplicity in pPb.
- SC(2,4) results between standard and subevents are different at high multiplicity in pPb.

postQM@Nagoya University,Jun 30th

Comparison with collision systems

- Normalize to compare with different collision systems.
- Strength of the correlations between harmonics similar between all systems except nsc_{2,3}{4} in pp.
 - Similar initial state fluctuation

System geometry

Hydrodynamics translates initial geometry into final state

Test hydro hypothesis by varying initial state

ε_2	ε_3
0.24	0.16
0.57	0.17
0.48	0.23
$^{\rm I+Au}\approx$	$\varepsilon_{c}^{3\text{He}+\text{Au}}$
	ε ₂ 0.24 0.57 0.48

 $\varepsilon_3^{\mathsf{p}+\mathsf{Au}} \approx \varepsilon_3^{\mathsf{d}+\mathsf{Au}} < \varepsilon_3^{\mathsf{3He}+\mathsf{Au}}$

v₂ vs initial geometry

Non-Flow subtraction methods

Two Jet Subtraction Methods

1.Low multiplicity subtraction scaled by short-range ($|\Delta \eta|$ < 0.5) near-side jet yield

$$V_{n,n}^{HM}(subtracted) = V_{n,n}^{HM} - V_{n,n}^{LM} \times \frac{N_{asso.}^{LM}}{N_{asso.}^{HM}} \times \frac{Y_{jet,near-side}^{HM}}{Y_{jet,near-side}^{LM}}$$

✓ Assumption: short-range near-side jet modification = long-range away-side jet modification

2.Template Fit

 A new developed method to subtract away-side jet contribution by ATLAS:

$$Y_{templ.}(\Delta \phi) = F \times Y_{LM}(\Delta \phi) + Y_{ridge}(\Delta \phi)$$

where

$$Y_{ridge}(\Delta \phi) = \mathbf{G} \times (1 + 2 \times \sum_{n=2}^{4} V_{n,n} \times \cos(n\Delta \phi))$$

ATLAS:PRL(116)172301

 Assumption: away-side jet shape can be measured in LM events and scaled by fit parameter "F" due to jet modification

It will cause a bias if assumptions are not correct

5/14/18

Shengli Huang

p/d+Au v₂ with same <dN/d η >

- \Box By LM subtraction method, v₂ in d+Au is a little bit larger than that of p+Au collisions
- v₂ between p+Au and d+Au collisions from template fit is similar, while the initial eccentricities are different by a factor of two

5/14/18 Shengli Huang 12

There is large difference between two methods

- \Box LM subtraction leads to a negative V_{2,2} at low energy
 - ✓ Different kinematics between near- and away-side jet-like correlations?
- \Box V_{2,2} from template fit increases as a function of <dN/d η >

5/14/18

Shengli Huang

13

LEP1 Data vs PYTHIA6 N≥35

- Hint of near-side peak in data
 - Consistent with PYTHIA6 without final state effects
 - Contribution from multi-jet correlation
- PYTHIA6 reference limited by archive MC statistics

$C_n{2} in e-p$

Familiar behaviour: non-flow dominates at small multiplicity and without eta-gap

No flow-like signal seen in high-multiplicity, large eta gap for c2, c3, c4

 $cn{2}$ in e-p is consistent with 0 for large Nch with large η gap.

Summary

- strangeness -> strangeness enhancement?
 - YES!!
- Resonances -> dynamics of hadronic medium?
 - We saw re-scattering effects from K*.
- PID v₂ -> collectivity?
 - Mass ordering. Charm flow? What is the origin of large J/psi v₂?
- v_n vs. collision geometry -> initial conditions?
 - strong correction with eccentricity
- Multi particle cumulant -> initial or final?
 - $v_2{4}/v_2{2} = v_3{4}/v_3{2}$ in p-Pb (not the case for A-A). Importance of initial fluctuation in v_2
 - c₂{4}<0 with large rapidity gap (sub event cumulant)
 - c_2 {4}<0 in dAu but c_2 {4}>0 in pAu
- Symmetric cumulant -> initial or final?
 - Correlation gets weaker if rapidity gap is required. Same trend in SC(2,4) and SC(2,3) between p-A and A-A. Different in p-p.
- Ridge in ee collisions -> thermalization/collectivity in ee?
 - no ridge in ee collisions. no flow like signal in ee.
 - no

Thank you for your attention!!

backup

$v_2(\eta)$ vs $dN_{ch}/d\eta$ in Geometry Control Scan

- d+Au scales well, but p+Au does not at backward rapidity
- 3D hydrodynamics quantitatively describes the data in p+Au

The event plane is measured in $-3.9 < \eta < -3.1$

mean pT

- ✓ Steeper increase in $\langle p_T \rangle$ with multiplicity in smaller systems
- ✓ Mass ordering of <p_T> in central Pb-Pb
 - $\langle p_T \rangle$ for K^{*0}, p and ϕ similar \rightarrow expected from hydro

 $M(K^{*0}) = 896 \text{ MeV}/c^2$, $M(p) = 938 \text{ MeV}/c^2$, $M(\phi) = 1019 \text{ MeV}/c^2$

✓ Mass ordering breaks down for smaller collision systems
 In pp: <p_T(φ)> = <p_T(Ξ)> despite 30% mass difference

heavy nuclei New results from LHC- Run2 at 7 TeV and 13 TeV vs multiplicity and

first ever observation of anti-³He in pp collisions from LHC-Run1 data

- pp spectrum shows no sign of radial flow (spectra hardening is clearly seen in heavy-ion collisions)
- integrated yields reduced of a factor ~1000 when adding a nucleon
 - it is ~ 300 and ~ 600 in Pb-Pb and p-Pb collisions, respectively

heavy nuclei

36

The formation probability of composite nuclei can be quantified through the coalescence parameter B_A

 $B_A = \frac{E_A \frac{d^3 N_A}{dp_A^3}}{\left(E_p \frac{d^3 N_p}{dp_p^3}\right)^A}$

 No p_T dependence as suggested by simple coalescence models

heavy nuclei

POLITECNICO DI TORINO

> Latest results in pp at 7 TeV and 13 TeV fit the trend drawn by other energies/colliding systems at the LHC

news

- matching of pp and p-Pb points at similar multiplicities
- rising with multiplicity explained in coalescence models as due to an increased proton and neutron density

- In pp (and p-Pb) the results point out that the rise in the number of nucleons dominates over the increase in the volume size
- No significant centrality dependence in Pb-Pb collisions in agreement with Thermal-statistical model

(Anti-)nuclei production in small systems

New results from LHC- Run2 at 7 TeV and 13 TeV vs multiplicity and first ever observation of anti-³He in pp collisions from LHC-Run1 data

Stefania Bufalino - QM2018 in Venice

16

news

Why study resonances? ✓ Short lifetimes -> can be decayed / regenerated inside the hot and dense matter by final state

interactions -> sensitive to the evolution dynamics **Properties of Hadronic Phase**

-- Modification of yields and particle ratios as a hint of re-generation/re-scattering effects

Kinetic freeze-out

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Receneration: Pseudo-elastic scattering	Resonance	τ(fm/c)	Decay	BR (%)		
	through resonance state e.g., $\pi K \rightarrow K^* \rightarrow \pi K$	ρ ⁰ (770)	1.3	ππ	100		
	-> increases yield	Δ(1232)	1.7	Νπ	99.4		
Re-scattering: resonance decay products undergo elastic scattering or pseudo-elastic scattering through a different resonance (e.g. ρ) -> decreases yield		K*(892)	4.2	Κπ	66.6		
	undergo elastic scattering or pseudo-elastic	Σ [*] ±(1385)	5.5	πΛ	87		
	cattering through a different resonance	A*(1520)	12.6	рK	22.5		
	∃ ^₀ (1530)	21.7	Ξπ	66.7			
	-> decreases yield	ф(1020)	46.4	КК	48.9		
Chemical - Hadronic phase exists in A-A collisions freeze-out - Is there any hadronic phase in high multiplicity pp and p-Pb events?							
14/05/18	QM2018				2		

postQM@Nagoya University,Jun 30th

Ζ

particle ratio as a function of multiplicity

Special role of ϕ

Strangeness enhancement

Strangeness enhanced from pp to PbPb.

D⁰ – charged hadron correlations

 $185 \le N_{trk} < 250$

$|m_{inv} - m_{D0}| < 0.005 \text{ GeV}$

Comparison with collision systems

 Symmetric cumulants consistent between all three systems in the <Nch> range covered by p+p collisions.