

What is the HBT Puzzle?

 Why do hydro+cascade models fail?
 success elliptic flow & spectra hailed as proof of "perfect QCD liquid"
 some pure hadron cascade models work much better

2. Blast-wave models fit data

Scott Pratt

- suggest very rapid expansion
- ø extremely high breakup density

Michiaan State Univer

ASIDE Early Acceleration

... related to HBT Sinyukov (From God) Krakow (Free-Streaming) Li & Bleicher (Pre-hadron potentials)

Michigan State Universit

A Gallery of Models									
MODEL	T _{zz}	T⊥	dE/dŋ	Tr Τ _{αβ}					
Flux Tube	3-	3	∝T	0					
1000 Points of Light	0	ε/2	constant	0					
CGC (Krasnitz,Nara,Venugopolan)	0	∝ε/2	∝constant	0					
Free-Streaming	0	ε/2	constant	0					
Ideal Hydro	ε/3	ε/3	∝ τ -1/3	0					
??????	0	0							
Cost Pratt Mickigan State Unive									

Last Universal Flow Slide

Flow for first ~1 fm/c is "universal" if: Boost-invariant (Bjorken) flow Traceless stress-energy tensor

 κ is function of τ only (not x or y)

Scott Pratt

Initial "flow" for hydro depends only on initial profile, microscopic structure irrelavant

Michigan State Universi

Other Observables					E0 (GeV/fm³) width of soft region in EoS L=0 L=800 MeV* L=1.6 GeV	$\frac{150}{114.5}\\104.5$	
MEAN PT (MeV)					stiffness of soft region in EoS $c^2 = 0$ 107		
$(-(+,0,-))$ $V(+,-)$ r_{2} r_{2} \bar{r}_{3}			$c_s = 0$	114.5			
CTAD	<u> </u>	R (1) 74	p, n, p, n		$c_s = 0.1$	194.5	
DUENIV	422 ± 22	719 ± 74 674 \pm 78	1100 ± 110		$\frac{c_s = 0.2}{c_s = 0.2}$	124.0	
	405 ± 05	0.14 ± 10	934 ± 63		shear viscosity in parton phase		
L=0	528	897	1310		$4\pi\eta/s=0$	289	
$L=800 \text{ MeV/Im}^3$ $I=1.6 \text{ CeV/fm}^3$	402	652	021	1	$4\pi\eta/s=2*$	114.5	
$L=1.0 \text{ GeV/III}^{-2}$	403	052	931		$4\pi\eta/s=4$	106.5	
$c_s^2 = 0$	406	659	945		initially isotropic init. cond.	148	
$c_s^2 = 0.1$	433	714	1027		max. bulk viscosity in soft region		
$c_s = 0.2$	403	112	1110		$4\pi B/s=0$	124	
$4\pi\eta/s=0$	408	664	957		$4\pi B/s=2^{*}$	114.5	
$\frac{4\pi\eta/s=2}{4\pi\eta/s=4}$	433	749	1027		$4\pi B/s=4$	109	
Initially isotropic	445	695	1031		initial density profile		
$\frac{1}{4\pi(\zeta/z)} = 0$	469	769	1107	ł		196	
$\frac{4\pi(\zeta/s)_{\max}=0}{4\pi(\zeta/s)=2}$	402	703	1027		Weren de d'Nerele en *	114 5	
$\frac{4\pi(\zeta/s)_{\max}-2}{4\pi(\zeta/s)-4}$	433	679	983			114.0	
$\frac{4\pi(\zeta/3)_{\text{max}}-4}{CCC IC}$	410	741	1062	ł	Collision Scaling	180	
Wounded Nucleon	447	741	1002			alesso and	
Collision Scaling	433	806	1173				
	1.52	0.00	1110				
Scott Pratt					Michigan S	tate Universit	

sity

HBT Puzzle: Part II

Blast Wave, Therminator, Buda-Lund...

Fit HBT, spectra...

Ø End up with R≈12 fm, τ≈10 fm/c, v_⊥≈0.7c

Michigan State Universit

Suggests:

Scott Pratt

- instantaneous acceleration
- breakup density $\approx \rho_0$

