Centrality determination with the Event Plane Detector for fluctuation measurements from STAR

Yuri Sato, for the STAR Collaboration post QM @ Nagoya University 2019.12.22

Physics Motivation

- Lattice QCD calculation has predicted that phase transition around $\mu_{\rm B}=0$ is "**smooth crossover**".
- \checkmark We search for the 1st-order phase transition and the critical point.
- ✓ Fluctuations of conserved quantities are considered to be a powerful tool to search for the critical point.

Beam Energy Scan@STAR (~2014, 7.7-200 GeV)

Non-monotonic behavior of net-p $\kappa\sigma^2$ at low energy appeared, which could be a signature of the critical point.

Y.Aoki et al., Nature, 443, 675 (2006) X.Luo,PoS(CPOD2014)019

Beam Energy Scan II (BES-II)

Beam Energy Scan II (2019~)

- □ Lower collision energies (< 20 GeV)
- □ New detectors (**EPD**, eTOF, iTPC)
- □ 10-20 times larger statistics than BES-I

Event Plane Detector (EPD)

- ✓ A new scintillation detector installed in 2.1 < | η | < 5.1
- ✓ Consist of 16 rings x 24 segments in East and West side each
- ✓ Expected to be a centrality detector with less autocorrelation effect

Beam Energy	$\sqrt{s_{NN}}$ (GeV)	$\mu_{\rm B} ({\rm MeV})$	Run Time	Number Events
(GeV/nucleon)				
9.8	19.6	205	4.5 weeks	400M
7.3	14.5	260	5.5 weeks	300M
5.75	11.5	315	5 weeks	230M
4.55	9.1	370	9.5 weeks	160M
3.85	7.7	420	12 weeks	100M
31.2	7.7 (FXT)	420	2 days	100M
19.5	6.2 (FXT)	487	2 days	100M
13.5	5.2 (FXT)	541	2 days	100M
9.8	4.5 (FXT)	589	2 days	100M
7.3	3.9 (FXT)	633	2 days	100M
5.75	3.5 (FXT)	666	2 days	100M
4.55	3.2 (FXT)	699	2 days	100M
3.85	3.0 (FXT)	721	2 days	100M
	Run 19	Run 20	Run 21	

STAR 🖈

Autocorrelation Effect

2019.12.22

- UrQMD studies show autocorrelation effect makes fluctuations smaller.
- Current centrality determination is based on multiplicity at mid-rapidity, \checkmark excluding particles of interest.
 - Current centrality determination maybe biased by the autocorrelation.
- Important to determine the centrality by reducing autocorrelation effect for fluctuation measurements.

Performance of the EPD

Landau Fluctuation

- ✓ The EPD measures NMip, gain calibrated energy ¹⁴⁰⁰ loss in tile, in units of Landau MPV for one MIP. ¹²⁰⁰
- Considered large NMip (>NMipMax) is due to Landau fluctuation effect, and assume the NMip of the tile is NMipMax.
 - \Rightarrow NMipMax=4 : If (NMip>4) NMip=4

STAR 🖈

Spectators in the EPD

- ✓ In lower energy collisions, also spectators are measured in the EPD region.
- ✓ Number of spectators increases in peripheral collisions.

EPD-TPC Correlations in Au+Au 27 GeV

TPC Mult.(|n| < 0.5)

Centrality Determination by the EPD

- ✓ Positive correlation between EPD and TPC in outer rings
- ✓ Anticorrelation in inner rings (spectator-participant correlation)
- ✓ Summing up all rings will make the centrality resolution worse.
- \checkmark Construct a cleaner correlation between EPD and TPC
 - → □ Using only outer rings of the EPD
 - Neural Network approach to recover the linearity

Need to search for the best way to use the EPD as a centrality detector!

Neural Network (N.N.) Approach

Artificial Neural Network is a method of Machine Learning, inspired by biological neural network. It "learns" by updating weights and biases between each neuron.

- → (left) non-linear correlation between EPD and TPC because of spectators in inner rings
- → (right) linear correlation between N.N. output and TPC multiplicity
- Centrality Resolution can be improved!

Centrality Resolution of the EPD

600

200

No. of Events

- ✓ Impact parameter b cannot be measured experimentally.
- ✓ Seeing relative width of correlations, centrality resolution by the EPD can be compared.

- RefMult : multiplicity in $|\eta| < 0.5$, * measured by TPC.
- RefMult3 : multiplicity in $|\eta| < 1.0$, * measured by TPC, excluding protons
- N.N.RefMult/RefMult3: * Output of N.N. trained to return RefMult/RefMult3
- \rightarrow TPC Mult. distributions in a centrality class determined by the EPD

Centrality Resolution of the EPD

- ✓"EPD9-16" (outer 8 rings) and "EPD5-16" (outer 12 rings) have better resolution than "EPD13-16" (outer 4 rings).
- ✓ "N.N.RefMult" and "N.N.RefMult3" have the best centrality resolution. We can use information by the EPD all rings weighted automatically.
- "NMipMax=2" has the best centrality resolution compared to larger NMip upper ^{2019,12,22} limit, because of reduced Landau fluctuation.

Perspective for Fluctuation Measurements STAR *

- ✓ Ways to determine collision centrality with the EPD are discussed.
- □ Need to know how fluctuation results change by ways for centrality selection.
- Need to keep in mind that below 2 affect the same direction:
 - Worse centrality resolution makes fluctuations larger.
 - Less autocorrelation makes fluctuations larger.

Autocorrelation of the previous centrality determination really effects on fluctuations?

References

- ➤ X. Luo, PoS (CPOD2014) 019
- ➤ Y. Aoki et al., Nature, 443, 675 (2006)
- > X. Luo et al., J. Phys. G: Nucl. Part. Phys. 40 105104 (2013)
- ➤ T. Sugiura et al., Phys. Rev. C 100, 044904(2019)

Back up

Volume Fluctuation and Autocorrelation

Centrality can be determined for each class to have the same number of

events based on these distributions.

Need to investigate a model including spectators and Landau fluctuations effects for the EPD centrality ??

14

Multiplicity/NMip Distributions

✓ NMip distributions measured by the EPD have different shape compared to multiplicity by the TPC due to spectators and Landau fluctuations.

Energy Dependence of $\kappa\sigma^2$

• C_4/C_2 values at 54.4 GeV follows the energy dependence observed in other energies.

Centrality Resolution Effect

• Worse centrality resolution makes fluctuations larger.

