理論の新展開 **Quark matter 2012**

野中さんのスライドより(熱場の量子論2012)

Relativistic Heavy Ion Collisions

Pre-Equilibrium & Initial State

Global &Collective Flow Correlations & Fluctuations

QCD at Finite Temperature and Density

QCD Phase Diagram

Hadron Thermodynamics and Chemistry

Jets Heavy flavor &Quarkonia Electro-Weak Probes

板倉さんのスライドより(第19回HIC/第12回HIP)

QM2011の重要な結論

• 今回ほど初期条件の重要性が決定的に認識 された会議は無かった。

Away-side jetのdouble hump structureや Ridge の正体は、初期条件の揺らぎの物理 であることが、higher harmonicsの解析で明 らかになった。v3!!

Mach cone は、ジェットと媒質の相互作用による効果であるから、それは 「ダイナミカル」な効果として出現するもの。なので、その描像は死んだ。 一方、Ridgeとは、ジェット周りの粒子の尾根構造をいい、特定の物理機 構を示唆していない。なので、ridgeが死んだというのではなく、ridgeの原 因が、初期条件の揺らぎだった、ということ → 詳しくは江角さんの解説参照

<mark>さらに、v3の詳細な解析は初期条件に対するconstraintを与える</mark>

Plenary talk by H. Song

$$
1 \times (1/4\pi) \leq (\eta/s)_{QGP} \leq 2.5 \times (1/4\pi)
$$

Main uncertainties come from initial conditions

MC-KLN, larger $\varepsilon_2 \longrightarrow$ HIGHER value of QGP viscosity MC-Glauber, smaller $\varepsilon_2 \longrightarrow$ LOWER value of QGP viscosity

衝突初期の量子ゆらぎ

流体のゆらぎ

輸送係数などの理論的精密計算に向けて

The proton pre-collision Plenary talk by Dusling

Our field has a good understanding of the proton wave-function:

Plenary talk by Dusling

Power counting in QCD: multiparticle production

p+p vs A+A Plenary talk by Dusling

In p+p we are seeing the intrinsic collimation from a single flux tube

Increasing transverse flow in p+p creates a discrepancy with data.

In A+A there are many such tubes each with an intrinsic correlation enhanced by flow

Yet, transverse flow is needed to explain identical measurements in Pb+Pb

Are we sure the A+A ridge is probing the nuclear wavefunction?

強い場⇒Tree levelがLeading order 古典Yang-Millsのシミュレーション Plenary talk by Dusling

Plenary talk by Dusling

Weak coupling: amplification of quantum fluctuations

Consider a homogeneous scalar field:

$$
\partial_t^2 \phi_0 + V'(\phi_0) = 0
$$

Adding fluctuations to the background field

$$
\phi(t, \mathbf{x}) = \phi_0(t) + a_{\mathbf{k}}(t) \cos(\mathbf{k} \cdot \mathbf{x})
$$

results in the linearized EoM for small fluctuations: $\ddot{a}_{\pm \mathbf{k}} + \left[\mathbf{k}^2 + V''(\phi_0(t))\right]a_{\pm \mathbf{k}} = 0$

Certain amplitudes grow with time:

When $\ \mathbf{gt} \sim 1\ \ \text{these terms need to be resummed.}$

Plenary talk by Dusling

膨張系, スカラー理論

Longitudinally expanding non-linear scalar field

Have a proof of principle for scalar fields: what about QCD?

Master formula: The first Fermi Plenary talk by Dusling

Any inclusive observable:
\n
$$
\langle T^{\mu\nu}(\mathbf{x},t)\rangle_{\text{LLx+LInst.}} = \int [D\rho_1 D\rho_2] W_{x_1}[\rho_1] W_{x_2}[\rho_2]
$$
\n
$$
\times \int [\mathcal{D}\alpha] F_0[\alpha] T^{\mu\nu}_{\text{LO}}[A[\rho_1,\rho_2] + \alpha](\mathbf{x},t)
$$
\nGauge invariant spectrum of fluctuations:
\n
$$
F_0[\alpha] \propto \exp \left[-\frac{1}{2} \int d^3u \, d^3v \, \alpha(u) \, \Gamma_2^{-1}(u,v) \, \alpha(v) \right]
$$
\n
$$
\left.\n\begin{array}{c}\n\text{From solution of 3+1D} \\
\text{classical Yang-Mills Eqs.}\n\end{array}\n\right]
$$

Dusling, Gelis, Venugopalan, Nucl. Phys. A872 161-195 (2011).

Talk by Raju Venugopalan, Wed. 12pm

Berges, Schlichting, 1209.0817

流体におけるゆらぎ

ゆらぎの入った流体

$$
T^{\mu\nu} = T_{\text{ideal}}^{\mu\nu} + \Delta T^{\mu\nu} + S^{\mu\nu}, \quad J^{\mu} = n u^{\mu} + \Delta J^{\mu} + I^{\mu}
$$

Stochastic sources $S^{\mu\nu} = S^{\mu\nu}$ and I^{μ}

$$
\langle S^{\mu\nu}(x)S^{\alpha\beta}(y)\rangle = 2T\left[\eta\left(h^{\mu\alpha}h^{\nu\beta} + h^{\mu\beta}h^{\nu\alpha}\right) + \left(\xi - \frac{2}{3}\eta\right)h^{\mu\nu}h^{\alpha\beta}\right]\delta^4(x - y)
$$

$$
\langle S^{\mu\nu}(x)I^{\alpha}(y)\rangle = 0
$$

$$
\langle I^{\mu}(x)I^{\nu}(y)\rangle = 2\lambda\left(\frac{n}{w}\right)^2h^{\mu\nu}\delta^4(x - y)
$$

Talk by Stephanov

Correlations

The equal-(proper)time correlation function at freeze-out time τ_f :

$$
\langle \rho(\xi_1, \tau_f) \rho(\xi_2, \tau_f) \rangle = \frac{2}{A} \int_{\tau_0}^{\tau_f} \frac{d\tau}{\tau^3} \frac{\nu}{\epsilon + P} \int_{-\infty}^{\infty} d\xi \, G_{\rho}(\xi_1 - \xi; \tau_f, \tau) G_{\rho}(\xi_2 - \xi; \tau_f, \tau).
$$

Convenient variable $\rho \equiv \delta s/s$. Convenient notation: $\nu \equiv$ $4\eta/3+\zeta$ $\frac{s}{s}$.

Every point ξ, τ is a source of noise, $\rho = G_{\rho} \circ f$: $[S^{\mu\nu} = \Delta^{\mu\nu} (\epsilon + P)f]$

Talk by Stephanov

Disentangling correlation sources:

Fluctuations of initial conditions produce $\Delta \eta$ -independent correlation.

Hydrodynamic noise has local origin and produces characteristic $\Delta \eta$ dependence:

with magnitude proportional to viscosity.

• More can be learned from 2D $\Delta \phi$, $\Delta \eta$ correlations.

Analytical work is in progress (Todd Springer, Saturday).

Talk by R. Romatschke

A viscosity bound from fluid dynamics For QCD one finds for η /*s* in units of $\hbar = k_B = 1$ 流体モードの自己相互作用による ずれ粘性の熱ゆらぎ補正

Viscosity Bound

[Kovtun, Moore & PR, arXiv:1104.1586] cf. for Fermi gas, Chafin, Schafer, 1209.1006

Talk by Kapusta

 0.4

Talk by Kapusta

Magnitude of proton correlation ^{*−1*} 12 | 2001 | 2001 function depends strongly on how closely the trajectory passes by the critical point

$$
\left\langle \frac{dN(y_2)}{dy_2} \frac{dN(y_1)}{dy_1} - \left\langle \frac{dN}{dy} \right\rangle^2 \right\rangle \left\langle \frac{dN}{dy} \right\rangle^{-1}
$$

Foster by Murase

高次の流体のゆらぎ: Colored noise 1次の流体のゆらぎ:White noise

Filuctuation Dissipation Relation

$$
\langle \delta \pi^{\mu\nu}(x) \delta \pi_{\alpha\beta}(x') \rangle = T G_{\pi}(x - x') \cdot g^{\langle \mu}{}_{\langle \alpha} g^{\nu \rangle}{}_{\beta \rangle},
$$

$$
\langle \delta \Pi(x) \delta \Pi(x') \rangle = T G_{\Pi}(x - x'),
$$

$$
\langle \delta \nu_i^{\mu}(x) \delta \nu_j^{\alpha}(x') \rangle = T G_{ij}(x - x') \cdot (-\Delta^{\mu \alpha}).
$$

G(*x*): Extended for x^0 < 0 as even functions

Non-zero correlation in different time → **Colored Noise**

輸送係数などの精密理論計算へ

Talk by Derek Teaney Thermal Photon Production at NLO

The photon emission rate at weak coupling:

• The rate is function of the coupling coupling constant and *k/T*:

$$
2k(2\pi)^3 \frac{d\Gamma}{d^3k} \propto e^2 T^2 \Big[\underbrace{O(g^2 \log) + O(g^2)}_{\text{LO AMY}} + \underbrace{O(g^3 \log) + O(g^3)}_{\text{From soft } gT \text{ gluons}, n_B \simeq \frac{T}{\omega} \simeq \frac{1}{g}} + \dots
$$

 $O(g^3)$ is closely related to open issues in energy loss:

• At NLO must include drag, collisions, bremsstrhalung, and kinematic limits

Talk by Derek Teaney

Three rates for photon production at Leading Order **Baier, Kapusta, AMY**

1. Hard Collisions – a $2 \leftrightarrow 2$ processes

2. Collinear Bremmstrahlung – a $1 \leftrightarrow 2$ processes

Talk by Derek Teaney

3. Quark Conversions $-1 \leftrightarrow 1$ processes (analogous to drag)

$$
= \sim e^2 m_{\infty}^2 n_F \left[\log(\mu_{\perp}/m_{\infty}) + C_{\text{cnvrt}} \right]
$$

Full LO Rate is independent of scale μ_{\perp} :

$$
2k \frac{d\Gamma}{d^3k} \propto e^2 m_{\infty}^2 n_F \left[\log (T/m_{\infty}) + \underbrace{C_{\text{cnvrt}} + C_{\text{bremm}}(k) + C_{\text{cnvrt}}}_{\equiv C_{LO}(k)} \right]
$$

O(*g*) Corrections to Hard Collisions, Bremm, Conversions: Talk by Derek Teaney

- 1. No corrections to Hard Collisions:
- 2. Corrections to Bremm:
	- (a) Small angle bremm. Corrections to AMY coll. kernel. (Caron-Huot)

$$
\mathbf{g} \quad \mathbf{g} \quad
$$

 $C_{LO}[q_{\perp}] = \frac{Tg^2m_L^2}{a^2\left(a^2 + r\right)}$ *D* $\frac{g^2}{q_{\perp}^2(q_{\perp}^2+m_D^2)} \rightarrow$ A complicated but analytic formula

(b) Larger angle bremm. Include collisions with energy exchange, $q^- \sim gT$.

$$
\frac{\partial}{\partial \theta} Q = (q^+, q^-, q_\perp) = (gT, gT, gT)
$$

Talk by Derek Teaney

3. Corrections to Conversions:

Poable because of HTL sum rules (light cone causality) Simon Caron-Huot

• Gives a numerically small and momentum indep. contribution to the NLO rate

Full results depend on all these corrections.

These rates smoothly match onto each other as the kinematics change.

Talk by Derek Teaney

NLO Results: $\sim g^3\log(1/g) + g^3$

Many things can be computed next (e.g. shear viscosity and e-loss)

まとめ

初期の量子ゆらぎの計算可能に

⇒流体の初期状態へ

- ゆらぎの入った流体の粒子相関
- Arnold, Moore, and Yaffeの結果を超えたNLOの 摂動計算が可能になってきた.

他にも色々な発展 Lattice QCD, Heavy quark, Jet, energy loss, ...