Future plan of dilepton measurement レプトン対測定の将来計画

Satoshi Yano

Hiroshima University

Heavy Ion Pub @ Kyoto

03/08/2022

Dilepton: dielectron (e+e-) and dimuon (μ + μ -) – Carry the information w/o final-state interactions

- Dilepton: dielectron (e⁺e⁻) and dimuon ($\mu^+\mu^-$) Carry the information w/o final-state interactions
- Dilepton is interesting because of its invariant mass info.

- Dilepton: dielectron (e⁺e⁻) and dimuon ($\mu^+\mu^-$) Carry the information w/o final-state interactions
- Dilepton is interesting because of its invariant mass info. Low mass region (LMR): $M_{\parallel} < 1.0 \text{ GeV/c}^2$
 - Vector meson mass modification induced by medium effects – Thermal radiation at a late stage

- Dilepton: dielectron (e⁺e⁻) and dimuon ($\mu^+\mu^-$) Carry the information w/o final-state interactions
- Dilepton is interesting because of its invariant mass info. Low mass region (LMR): $M_{\parallel} < 1.0 \text{ GeV/c}^2$
 - Vector meson mass modification induced by medium effects
 - Thermal radiation at a late stage
 - Intermediate mass region (IMR): $1.0 < M_{\parallel} < 2.5 \text{ GeV/c}^2$
 - Yield enhancement induced by chiral mixing
 - Thermal radiation at an early stage

- Dilepton: dielectron (e+e-) and dimuon (μ + μ -) – Carry the information w/o final-state interactions
- Dilepton is interesting because of its invariant mass info. - Low mass region (LMR): $M_{\parallel} < 1.0 \text{ GeV/c}^2$
 - Vector meson mass modification induced by medium effects
 - Thermal radiation at a late stage
 - Intermediate mass region (IMR): $1.0 < M_{\parallel} < 2.5 \text{ GeV/c}^2$
 - Yield enhancement induced by chiral mixing
 - Thermal radiation at an early stage
 - High mass region (HMR): $M_{\parallel} > 2.5 \text{ GeV/c}^2$
 - Quakonia + beauty quark pair production

- Dilepton: dielectron (e⁺e⁻) and dimuon ($\mu^+\mu^-$) Carry the information w/o final-state interactions
- Dilepton is interesting because of its invariant mass info. – Low mass region (LMR): $M_{\parallel} < 1.0 \text{ GeV/c}^2$
 - Vector meson mass modification induced by medium effects
 - Thermal radiation at a late stage
 - Intermediate mass region (IMR): $1.0 < M_{\parallel} < 2.5 \text{ GeV/c}^2$
 - Yield enhancement induced by chiral mixing
 - Thermal radiation at an early stage
 - High mass region (HMR): $M_{\parallel} > 2.5 \text{ GeV/c}^2$
 - Quakonia + beauty quark pair production

Experimental technique electron identification

- All techniques use mass information for identification
 - e.g. dE/dx, time-of-flight, and so on

Experimental technique electron identification

- All techniques use mass information for identification
 - e.g. dE/dx, time-of-flight, and so on
- Unfortunately, muon mass is almost the same as the pion mass
 - $\mu = 105 MeV/c^2$, $\pi = 139 MeV/c^2$

- Muon penetrates thick material easily •
 - Stable lepton with much higher mass than electron

- Muon penetrates thick material easily •
 - Stable lepton with much higher mass than electron

- Muon penetrates thick material easily •
 - Stable lepton with much higher mass than electron

	Material	De	Detecto		
μ					

- Penetrate (achieving a detector)

- Muon penetrates thick material easily •
 - Stable lepton with much higher mass than electron

- Penetrate (achieving a detector)
- Stopped by the hadron shower

- Muon penetrates thick material easily •
 - Stable lepton with much higher mass than electron

- Penetrate (achieving a detector)
- Stopped by the hadron shower
- Stopped by the EM shower

- Muon penetrates thick material easily ullet
 - Stable lepton with much higher mass than electron ____

- Penetrate (achieving a detector)
- Stopped by the hadron shower
- Stopped by the EM shower
- Stopped by multiple scattering (elastic scattering)

- Muon penetrates thick material easily lacksquare
 - Stable lepton with much higher mass than electron

- Low-p_T muon is measured in forward rapidity (Lab-frame) lacksquare
 - Satisfy large total momentum and low-pt

- Penetrate (achieving a detector)
 - Stopped by the hadron shower
- Stopped by the EM shower
- Stopped by multiple scattering (elastic scattering)

e.g. p~5GeV/c \rightarrow pT~0.5GeV/c @ η =3.0

1990s - 2010s

Results from SPS: CERES dielectron measurement

- lacksquare
 - Low mass vector meson mass modification due to Chiral symmetry restoration (CSR)?
 - Dropping? or Broadening?

CERES collaboration observed the enhancement in LMR in A-A collisions, not in pp via dielectron

Results from SPS: CERES dielectron measurement

- CERES collaboration observed the enhancement in LMR in A-A collisions, not in pp via dielectron lacksquareLow mass vector meson mass modification due to Chiral symmetry restoration (CSR)?
- - Dropping? or Broadening?
- Resolution and statistics accuracy was insufficient to determine the source •
 - Combinatorial background electrons from π^0 Dalitz decay and γ conversion were huge

Results from SPS: NA60 dimuon measurement

- Clear excess was observed with high-quality data
 - Ruled out the dropping mass
 - Underestimate 0.6 0.8 GeV/ c^2 , overestimate 0.2 0.6 GeV/ c^2

Results from SPS: NA60 dimuon measurement

- Clear excess was observed with high-quality data
 - Ruled out the dropping mass
 - Underestimate 0.6 0.8 GeV/ c^2 , overestimate 0.2 0.6 GeV/ c^2
 - Excess data in LMR could be described by the hadronic matter effect
 - Not include the CSR effect

Results from SPS: NA60 dimuon measurement

- Clear excess was observed with high-quality data
 - Ruled out the dropping mass
 - Underestimate 0.6 0.8 GeV/c², overestimate 0.2 0.6 GeV/c²
 - Excess data in LMR could be described by the hadronic matter effect
 - Not include the CSR effect
- Excess data at IMR was explained by thermal radiation

- qqbar $\rightarrow \mu \mu$

- Excess below 1 GeV/c²
 - Consistent with other hadrons
 - Late-stage emission after the occurrence of radial flow
- Excess above 1 GeV/c²
 - No mass dependence
 - Early-stage emission before the occurrence of radial flow

RHIC results dielectron measurement

- Multiple verifications suggest QGP is generated at RHIC energies

• The same trend as SPS was seen in the collision energy of the RHIC BES program

RHIC results dielectron measurement

- Multiple verifications suggest QGP is generated at RHIC energies
- The same trend as SPS was seen in the collision energy of the RHIC BES program
 - Same temperature in LMR = the same temperature at late stage

NA60: EPJC (2009) 59: 607–623

RHIC results dielectron measurement

- Multiple verifications suggest QGP is generated at RHIC energies
- The same trend as SPS was seen in the collision energy of the RHIC BES program
 - Same temperature in LMR = the same temperature at late stage
 - Higher temperature in IMR = higher temperature at early stage

RHIC results dielectron measurement

- Multiple verifications suggest QGP is generated at RHIC energies
- The same trend as SPS was seen in the collision energy of the RHIC BES program
 - Same temperature in LMR = the same temperature at late stage
 - Higher temperature in IMR = higher temperature at early stage
- Enhancement has been measured at top energy $\sqrt{s_{NN}} = 200$ GeV (MB: 2.4M Evts)
 - Large uncertainties due to the huge combinatorics @ LMR and HF contributions @ IMR

Top RHIC energy $\sqrt{s_{NN}} = 200 \text{ GeV}$ (MB)

LHC results Dielectron and dimuon measurement

- Dielectron spectrum seems to have enhancement at LMR (0-10%: lacksquare65M Evts)
 - No conclusion due to insufficient accuracy
- It is difficult to extract thermal dielectron at IMR
 - More contribution from HF w.r.t. the previous experiments

Dimuon spectrum

D¹₁electron^{0.4} and dimuon measurement

Dielectron spectrum 0–10% Pb–Pb at $\sqrt{s_{NN}}$ = 5.02 TeV $0.2 < p_{-} < 10 \text{ GeV}/c, |\eta_{-}| < 0.8$ - 0.0 < p_ < 8.0 GeV/c 10-2 ALI-PREL-507155

Dimuon spectrum cannot access LMR and IMR

Insufficient mass resolution due to multiple scattering

Inaccessible low p_T region due to trigger operation

down to p_T~0.5 GeV/c w/o trigger threshold

2 Inaccessible estimation of HF contribution

Focus on LMR results at RHIC and LHC

Top RHIC energy $\sqrt{s_{NN}} = 200 \text{ GeV}$ (MB)

- - Need more precise measurement

Top LHC energy √*s*_{NN} = 5.02 **TeV (0-10%)**

Collisional broadening seems to overestimate both data in a mass range of 0.6 - 0.8 GeV/c²

Focus on LMR results at RHIC and LHC

Top RHIC energy $\sqrt{s_{NN}} = 200 \text{ GeV}$ (MB)

- - Need more precise measurement
- Thermal dilepton cannot be accessed due to huge HF contributions

Top LHC energy $\sqrt{s_{NN}} = 5.02 \text{ TeV} (0-10\%)$

Collisional broadening seems to overestimate both data in a mass range of 0.6 - 0.8 GeV/c²

Focus on LMR results at RHIC and LHC

Top RHIC energy $\sqrt{s_{NN}} = 200 \text{ GeV}$ (MB)

- - Need more precise measurement
- Thermal dilepton cannot be accessed due to huge HF contributions Much more statistics, reduction of combinatorics, and HF lepton rejection are necesary

Top LHC energy $\sqrt{s_{NN}} = 5.02 \text{ TeV} (0-10\%)$

Collisional broadening seems to overestimate both data in a mass range of 0.6 - 0.8 GeV/c²

- hadronic matter effects
 - Mass modification at LMR was discovered, but it did not indicate CSR necessarily
 - Ruled out mass dropping scenario at these energies
 - Thermal dilepton was measured and they are above Tc ~ 170 MeV —
 - Chiral mixing signal did not been measured

What learned?

At SPS and RHIC BES energy ($\sqrt{s_{NN}} \sim 17 - 55$ GeV), the LMR excess (broadening) could be explained by

- hadronic matter effects
 - Mass modification at LMR was discovered, but it did not indicate CSR necessarily
 - Ruled out mass dropping scenario at these energies
 - Thermal dilepton was measured and they are above $Tc \sim 170 \text{ MeV}$
 - Chiral mixing signal did not been measured
- combinatorial background and HF contributions disturbed the measurements
 - Excess at LMR with insufficient precision has been measured
 - Hadronic matter effects overestimate in a mass range of 0.6 0.8 GeV/c² (?)

What learned?

At SPS and RHIC BES energy ($\sqrt{s_{NN}} \sim 17 - 55$ GeV), the LMR excess (broadening) could be explained by

At RHIC and LHC energy ($\sqrt{s_{NN}} \sim 200$ GeV - 5 TeV), larger signals has been expected, but the huge

- hadronic matter effects
 - Mass modification at LMR was discovered, but it did not indicate CSR necessarily
 - Ruled out mass dropping scenario at these energies
 - Thermal dilepton was measured and they are above $Tc \sim 170 \text{ MeV}$
 - Chiral mixing signal did not been measured
- combinatorial background and HF contributions disturbed the measurements
 - Excess at LMR with insufficient precision has been measured
 - Hadronic matter effects overestimate in a mass range of 0.6 0.8 GeV/c² (?)
- Improvement of detection technology/method is essential
 - Improvement of vertex detector to determine leptons from HF DCA at low pt
 - Improve statistics and/or dimuon measurement to reduce combinatorial background effects

What learned?

At SPS and RHIC BES energy ($\sqrt{s_{NN}} \sim 17 - 55$ GeV), the LMR excess (broadening) could be explained by

At RHIC and LHC energy ($\sqrt{s_{NN}} \sim 200$ GeV - 5 TeV), larger signals has been expected, but the huge

HI program at LHC (ALICE 2) 2022 ~

- ALICE has been reborn with new read-out and reconstruction system, and Si sensor vertex detector
 - Just started data taking since 5th July

HI program at LHC (ALICE 2) 2022 ~ **Mid-rapidity**

- ALICE has been reborn with new read-out and ulletreconstruction system, and Si sensor vertex detector
 - Just started data taking since 5th July
- Better DCA resolution will be achieved by the new Si ulletdetector covering a wide rapidity range
 - Mid-rapidity ($|\eta|<1.2$) : DCA_{xy}@1GeV/c 60 μ m \rightarrow 25 μ m
 - Fwd-rapidity (2.5 η < 3.6) : DCA_{xy}@1GeV/c N/A \rightarrow 80 μ m
 - Better opening angle resolution

Forward rapidity

HI program at LHC (ALICE 2) 2022 ~ **Mid-rapidity**

- ALICE has been reborn with new read-out and ulletreconstruction system, and Si sensor vertex detector
 - Just started data taking since 5th July
- Better DCA resolution will be achieved by the new Si • detector covering a wide rapidity range
 - Mid-rapidity ($|\eta|<1.2$) : DCA_{xy}@1GeV/c 60 μ m \rightarrow 25 μ m
 - Fwd-rapidity (2.5 η < 3.6) : DCA_{xy}@1GeV/c N/A \rightarrow 80 μ m
 - Better opening angle resolution
- It will record all HI collisions with a 50 kHz interaction rate
 - 100 times larger statistics for MB and 10 times larger statistics 0-10% centrality

Forward rapidity

Expected performance of ALICE 2

Dielectron spectrum

- In dielectron measurement, the rejection power of HF contributes will be improved
 - 20% more rejection power with keeping signal efficiency

of HF contributes will be improved

Expected performance of ALICE 2

- In dielectron measurement, the rejection power of HF contributes will be improved \bullet
 - 20% more rejection power with keeping signal efficiency
- In dimuon measurement, the mass resolution will be improved significantly
 - Improve mass resolution σ_{ω} : ~ 50 MeV/c² \rightarrow 20 MeV/c²
 - Down to pt ~ 1 GeV/c thanks to new read would system ... GeV/c

Expected performance of ALICE 2

- In dielectron measurement, the rejection power of HF contributes will be improved \bullet
 - 20% more rejection power with keeping signal efficiency
- In dimuon measurement, the mass resolution will be improved significantly
 - Improve mass resolution σ_{ω} : ~ 50 MeV/c² \rightarrow 20 MeV/c²
 - Down to $p_T \sim 1$ GeV/c thanks to nev
- 10 MeV/ Mass modification at LMR will be [dimuons per to HF

will be still tough due

- NA60+ is the new planning experiment dedicated to muon measurement at SPS •
 - NA60 concept with new Si and fast readout technology ____

- NA60+ is the new planning experiment dedicated to muon measurement at SPS ullet
 - NA60 concept with new Si and fast readout technology
 - Fixed target experiment with several collision energies $\sqrt{s_{NN}} = 6 17$ GeV ____

- NA60+ is the new planning experiment dedicated to muon measurement at SPS
 - NA60 concept with new Si and fast readout technology
 - Fixed target experiment with several collision energies $\sqrt{s_{NN}} = 6 17$ GeV
 - Movable detector (change absorber length) to cover large dimuon mass range

- NA60+ is the new planning experiment dedicated to muon measurement at SPS ullet
 - NA60 concept with new Si and fast readout technology
 - Fixed target experiment with several collision energies $\sqrt{s_{NN}} = 6 17$ GeV
 - Movable detector (change absorber length) to cover large dimuon mass range
- Muon reconstruction performance and statistics will be improved ullet
 - $\times 10 100$ statistics of NA60

Expected performance of NA60+

- $(\sqrt{s_{NN}=6-17GeV})$
 - Evidence of the chiral mixing ρ -a₁ (20 30% yield enhancement @ 1 < M < 1.5 GeV/c²)

Higher precision measurement at IMR and HMR will be done at several collision energies

Expected performance of NA60+

- Higher precision measurement at IMR and H $(\sqrt{s_{NN}}=6-17GeV)$
 - Evidence of the chiral mixing ρ -a₁ (20 30% yield enhancement @ 1 < M < 1.5 GeV/c²)
 - Early stage temperature measurement via thermal radiation above 2 GeV/c² within few MeV

Chiral mixing

Higher precision measurement at IMR and HMR will be done at several collision energies

eld enhancement @ 1 < M < 1.5 GeV/c²) nal radiation above 2 GeV/c² within few MeV

Thermal radiation

Expected performance of NA60+

- $(\sqrt{s_{NN}=6-17GeV})$
 - Evidence of the chiral mixing ρ -a₁ (20 30% yield enhancement @ 1 < M < 1.5 GeV/c²)
 - Early stage temperature measurement via thermal radiation above 2 GeV/c² within few MeV
 - Charmonia (J/ ψ , ψ (2S)) measurement

Higher precision measurement at IMR and HMR will be done at several collision energies

Charmonia measurement

Fixed target program at LHC (AFTER) 2027 ~

- Fixed target mode with TeV beams
- Several methods of placing target

Technical Solution	Beam type	Target type	θ_{target}	\mathcal{L}	
			(cm^{-2})	$(cm^{-2}.s^{-1})$	(1
Gas-Jet Target	p	H↑	1.2×10^{12}	4.3×10^{30}	
	p	H ₂	10 ¹⁵ - 10 ¹⁶	$3.6 \times 10^{33} - 3.6 \times 10^{34}$	36 × 1
	Pb	H↑	1.2×10^{12}	5.6×10^{26}	0.
	Pb	H ₂	10 ¹⁵ - 10 ¹⁶	$4.7 \times 10^{29} - 4.7 \times 10^{30}$	(
Storage-Cell Target	p	H↑	2.5×10^{14}	9.2×10^{32}	
	p	Xe	6.4×10^{13}	2.3×10^{32}	
	Pb	H↑	2.5×10^{14}	1.2×10^{29}	
	Pb	Xe	6.4×10^{13}	3.0×10^{28}	
Bent Crystal + Solid Target	p	Pb	1.6×10^{22}	8.2×10^{30}	
	Pb	Pb	1.6×10^{22}	1.6×10^{27}	1

Fixed target program at LHC (AFTER) 2027 ~

- Fixed target mode with TeV beams
- Several methods of placing target
 - LHCb has started the program with a gas-jet

	tar	ſġ	e .	t
--	-----	----	------------	---

Technical Solution	Beam type	Target type	θ_{target}	\mathcal{L}	
			(cm^{-2})	$(cm^{-2}.s^{-1})$	(p
Gas-Jet Target	р	H↑	1.2×10^{12}	4.3×10^{30}	
	р	H_2	10 ¹⁵ - 10 ¹⁶	$3.6 \times 10^{33} - 3.6 \times 10^{34}$	36×1
	Pb	H↑	1.2×10^{12}	5.6×10^{26}	0.
	Pb	H ₂	10 ¹⁵ - 10 ¹⁶	$4.7 \times 10^{29} - 4.7 \times 10^{30}$	C
Storage-Cell Target	р	H↑	2.5×10^{14}	9.2×10^{32}	
	р	Xe	6.4×10^{13}	2.3×10^{32}	
	Pb	H↑	2.5×10^{14}	1.2×10^{29}	
	Pb	Xe	6.4×10^{13}	3.0×10^{28}	
Bent Crystal + Solid Target	р	Pb	1.6×10^{22}	8.2×10^{30}	
	Pb	Pb	1.6×10^{22}	1.6×10^{27}	1

Fixed target program at LHC (AFTER) 2027 ~

- Fixed target mode with TeV beams
- Several methods of placing target
 - LHCb has started the program with a gas-jet
- Energy range on a fixed target
 - 7 TeV proton beam
 - $\sqrt{s} = \sqrt{2m_N E_p} = 115 \text{ GeV}$
 - $y_{\text{c.m.s.}} = 0 \rightarrow y_{\text{lab}} = 4.8$ ($\gamma \sim 60$)
 - 2.76 TeV Pb beam
 - $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} = 72 \text{ GeV}$
 - $y_{\text{c.m.s.}} = 0 \rightarrow y_{\text{lab}} = 4.3$ ($\gamma \sim 40$)

t targe	et
---------	----

Technical Solution	Beam type	Target type	θ_{target}	\mathcal{L}	
			(cm^{-2})	$(cm^{-2}.s^{-1})$	(1
Gas-Jet Target	р	H↑	1.2×10^{12}	4.3×10^{30}	
	р	H ₂	10 ¹⁵ - 10 ¹⁶	$3.6 \times 10^{33} - 3.6 \times 10^{34}$	36 × 1
	Pb	H↑	1.2×10^{12}	5.6×10^{26}	0.
	Pb	H ₂	10 ¹⁵ - 10 ¹⁶	$4.7 \times 10^{29} - 4.7 \times 10^{30}$	(
Storage-Cell Target	р	H↑	2.5×10^{14}	9.2×10^{32}	
	р	Xe	6.4×10^{13}	2.3×10^{32}	
	Pb	H↑	2.5×10^{14}	1.2×10^{29}	
	Pb	Xe	6.4×10^{13}	3.0×10^{28}	
Bent Crystal + Solid Target	р	Pb	1.6×10^{22}	8.2×10^{30}	
	Pb	Pb	1.6×10^{22}	1.6×10^{27}	1

• What is the difference between NA60+?

- What is the difference between NA60+?
 - QGP is created at the energy $\sqrt{s_{NN}} = 72 \text{ GeV}$

- What is the difference between NA60+? lacksquare- QGP is created at the energy $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Forward detector, but mid-rapidity physics •

- What is the difference between NA60+?
 QGP is created at the energy √snn = 72 GeV
- Forward detector, but mid-rapidity physics
- Low-pT HF contributions can be identified thanks to boosting

Event display of LHCb

CS d

- What is the difference between NA60+? lacksquare- QGP is created at the energy $\sqrt{s_{NN}} = 72 \text{ GeV}$
- Forward detector, but mid-rapidity physics lacksquare
- Low-pt HF contributions can be identified lacksquarethanks to boosting

Event display of LHCb

- LMR and IMR dimuon performance evaluation has not been started
 - Very interesting results can be expected

- ALICE 3 is the next generation experiment at LHC to investigate the property of strongly interacting matter
 - Based on Si sensor detectors covering $|\eta| < 4$
 - Planning to start from 2035

- ALICE 3 is the next generation experiment at LHC to investigate the property of strongly interacting matter
 - Based on Si sensor detectors covering $|\eta| < 4$
 - Planning to start from 2035
- ALICE 3 will be designed to meet the required • improvements in lepton measurement

- ALICE 3 is the next generation experiment at LHC to investigate the property of strongly interacting matter
 - Based on Si sensor detectors covering $|\eta| < 4$
 - Planning to start from 2035
- ALICE 3 will be designed to meet the required • improvements in lepton measurement
 - Precise vertexing with low material budget
 - HF lepton rejection

- ALICE 3 is the next generation experiment at LHC to investigate the property of strongly interacting matter
 - Based on Si sensor detectors covering $|\eta| < 4$
 - Planning to start from 2035
- ALICE 3 will be designed to meet the required improvements in lepton measurement
 - Precise vertexing with low material budget
 - HF lepton rejection
 - Good particle identification
 - Remove combinatorial background •

- ALICE 3 is the next generation experiment at LHC to investigate the property of strongly interacting matter
 - Based on Si sensor detectors covering $|\eta| < 4$
 - Planning to start from 2035
- ALICE 3 will be designed to meet the required improvements in lepton measurement
 - Precise vertexing with low material budget
 - HF lepton rejection
 - Good particle identification
 - Remove combinatorial background
 - Large collision rate and high-speed readout
 - Get large statistics

The detector will cover a wide p_T and rapidity range •

The detector will cover a wide p⊤ and rapidity range •

Compact detector design: R < 3m

- The detector will cover a wide p_T and rapidity range •
 - Compact detector design: R < 3m ____
 - Vertexing and tracking with full Si tracker at the barrel and the forward ____

The detector will cover a wide p_T and rapidity range •

- Compact detector design: R < 3m —
- Vertexing and tracking with full Si tracker at the barrel and the forward
- Particle identification with TOF x 2, RICH, EMCal, and muon chamber

The detector will cover a wide p_T and rapidity range •

- Compact detector design: R < 3m
- Vertexing and tracking with full Si tracker at the barrel and the forward
- Particle identification with TOF x 2, RICH, EMCal, and muon chamber
- Ultra soft photon measurement with conversion tracker at the forward rapidity ____

Precise vertex and track reconstruction

The innermost 3 layers and 3 disks will be installed inside the beam pipe •

Precise vertex and track reconstruction

- The innermost 3 layers and 3 disks will be installed inside the beam pipe
 - Retractable detector design: $R_{min} = 5 \text{ mm}$ (beam injection) $\rightarrow 1.5 \text{ mm}$ (physics run)

be installed inside the beam pipe beam injection) \rightarrow 1.5 mm (physics run)

Precise vertex and track reconstruction

- The innermost 3 layers and 3 disks will be installed inside the beam pipe • Retractable detector design: $R_{min} = 5 \text{ mm}$ (beam injection) $\rightarrow 1.5 \text{ mm}$ (physics run)

 - Pixel pitch: 5 μ m (ALICE 2: ~30 μ m)
 - DCA_{xy & z} resolution: ~ $4 \mu m @ 1 GeV/c$ (ALICE 2: $25 \mu m$)

Particle identification

Electron will be identified with outer and inner TOF and RICH • – Up to 1.5 GeV/c with RICH and down to 0.06 GeV/c with inner TOF

Inner TOF (20 cm)

Outer TOF (85 cm)

RICH Cherenkov angle

Particle identification

- Electron will be identified with outer and inner TOF and RICH Up to 1.5 GeV/c with RICH and down to 0.06 GeV/c with inner TOF
- Muon will be identified with RICH and Muon identifier
 Up to ~1.5 GeV/c with RICH and over > 1.5 GeV/c with Muon identifier
 Inner TOF (20 cm)
 Outer TOF (85 cm)
 RICH

RICH Cherenkov angle

Collision system

- Data acquisition is based on the ALICE O2 system ullet
 - Continues readout (trigger less) ____

Collision system

- Data acquisition is based on the ALICE O2 system lacksquare
 - Continues readout (trigger less)
- Collide lighter nucleus is proposed lacksquare
 - QGP creation in Xe-Xe at LHC energies (confirmed at Run 2)

Collision system

- Data acquisition is based on the ALICE O2 system
 - Continues readout (trigger less)
- Collide lighter nucleus is proposed \bullet
 - QGP creation in Xe-Xe at LHC energies (confirmed at Run 2)
 - Achieve higher luminosity, e.g. L_{XeXe} ~ 4 5 x L_{PbPb}

Quantity	рр	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0\cdot10^{32}$	$1.5\cdot 10^{30}$	$3.2\cdot10^{29}$	$2.8\cdot 10^{29}$	$8.5\cdot10^{28}$	$5.0\cdot10^{28}$	$3.3\cdot 10^{28}$	$1.2\cdot 10^{28}$
$\langle L_{ m AA} angle ~(m cm^{-2}s^{-1})$	$3.0\cdot10^{32}$	$9.5\cdot 10^{29}$	$2.0\cdot 10^{29}$	$1.9\cdot 10^{29}$	$5.0\cdot10^{28}$	$2.3\cdot 10^{28}$	$1.6\cdot 10^{28}$	$3.3\cdot 10^{27}$
$\mathscr{L}_{AA}^{month} (nb^{-1})$	$5.1\cdot 10^5$	$1.6\cdot 10^3$	$3.4\cdot 10^2$	$3.1 \cdot 10^2$	$8.4\cdot10^1$	$3.9 \cdot 10^1$	$2.6\cdot 10^1$	5.6
$\mathscr{L}_{NN}^{month} \left(pb^{-1} \right)$	505	409	550	500	510	512	434	242
R _{max} (kHz)	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$dN_{\rm ch}/d\eta$ (MB)	7	70	151	152	275	400	434	682

Expected performance of ALICE 3

- Performance evaluation of dielectron is in ulletprogress
 - Rejection of 94% ccbar with keeping 73% of ____ prompt pairs (17% with ALICE 2)

Pair DCA

Expected performance of ALICE 3

- Performance evaluation of dielectron is in lacksquareprogress
 - Rejection of 94% ccbar with keeping 73% of prompt pairs (17% with ALICE 2)
 - Able to measure with > 10% uncertainty in the mass region where 20% enhancement is expected due to chiral mixing (ideal detector performance)

Chiral mixing prediction

dN ²/dm_{ee}dy (GeV/c ²⁾ G ALICE 3 Study p spectral function 0-10% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ---- in vacuum $0.2 < p_{Te} < 4 \text{ GeV}/c, \ln 1 < 0.8$ — in medium w/ χ-mixing 1/N_{ev} 10-2 g with χ -mixir 1.2E 0.8 ×

0.8

0.6

1.2

1.4

m_{ee} (GeV/*c*²)

0.6

0.2

0.4

Expected excess 5 ALICE 3 Study (GeV/c 0-10% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ TOF+RICH ($4\sigma_{\pi}$ rej), B = 0.5 TOF+RICH ($4\sigma_{\pi}$ rej), B = 0.5 T $0.2 < p_{_{T_o}} < 4 \text{ GeV}/c, |\eta_{_o}| < 0.8$ ²/²/10⁻ No bremsstrahlung included ٨b $DCA_{oo} \leq 1.2\sigma$ Nev — Fit of the spectrum <u></u> 10^{-:} 10^{-3} 10⁻⁴ data'/cocktail 0.9 0.8 0.2 1.2 1.4 1.6 0.4 0.6 0.8

ALICE 3 Study pp, $\sqrt{s} = 14$ TeV, Layout v1 10^{-2} 18 20

Pair DCA

Expected performance of ALICE 3

- Performance evaluation of dielectron is in progress
 - Rejection of 94% ccbar with keeping 73% of prompt pairs (17% with ALICE 2)
 - Able to measure with > 10% uncertainty in the mass region where 20% enhancement is expected due to chiral mixing (ideal detector performance)
- No dimuon performance expectation yet •
 - Rejection of huge combinatorics
 - Expect better DCA resolution than dielectron
 - No evaluation of dimuon measurement

Pair DCA

Chiral mixing prediction

- LMRとIMRのレプトン対測定がSPS、RHIC、LHCで長年行われてきた •
 - 多くの実験がLMRの質量分布の変化を捉えた
 - 低エネルギー実験では、IMRの分布を用いて衝突初期の温度を測定した
 - 高エネルギー実験では、HFからのバックグランドが大きく温度測定は実現していない
 - の削除が課題である

初期温度測定、LMRの質量変化の原因解明、カイラルミキシングの信号を検出には、より多くの統計、コンビナトリアルバックグランドの削除、HFレプトン

- LMRとIMRのレプトン対測定がSPS、RHIC、LHCで長年行われてきた •
 - 多くの実験がLMRの質量分布の変化を捉えた
 - 低エネルギー実験では、IMRの分布を用いて衝突初期の温度を測定した
 - 高エネルギー実験では、HFからのバックグランドが大きく温度測定は実現していない
 - の削除が課題である
- 2つのコンビナトリアルバックグランド問題を解決する方法
 - 統計量をあげる
 - ミューオン測定に注力する

初期温度測定、LMRの質量変化の原因解明、カイラルミキシングの信号を検出には、より多くの統計、コンビナトリアルバックグランドの削除、HFレプトン

- LMRとIMRのレプトン対測定がSPS、RHIC、LHCで長年行われてきた •
 - 多くの実験がLMRの質量分布の変化を捉えた
 - 低エネルギー実験では、IMRの分布を用いて衝突初期の温度を測定した
 - 高エネルギー実験では、HFからのバックグランドが大きく温度測定は実現していない
 - の削除が課題である
- 2つのコンビナトリアルバックグランド問題を解決する方法
 - 統計量をあげる
 - ミューオン測定に注力する
- 2つのHFレプトンの同定力を上げる方法
 - 高性能なVertex検出器を開発(しかし、これは限界に近づいている)
 - 衝突点前方で測定することでブーストさせる(LHCb方式)

初期温度測定、LMRの質量変化の原因解明、カイラルミキシングの信号を検出には、より多くの統計、コンビナトリアルバックグランドの削除、HFレプトン

- LMRとIMRのレプトン対測定がSPS、RHIC、LHCで長年行われてきた \bullet
 - 多くの実験がLMRの質量分布の変化を捉えた
 - 低エネルギー実験では、IMRの分布を用いて衝突初期の温度を測定した
 - 高エネルギー実験では、HFからのバックグランドが大きく温度測定は実現していない
 - の削除が課題である
- 2つのコンビナトリアルバックグランド問題を解決する方法
 - 統計量をあげる
 - ミューオン測定に注力する
- 2つのHFレプトンの同定力を上げる方法
 - 高性能なVertex検出器を開発(しかし、これは限界に近づいている)
 - 衝突点前方で測定することでブーストさせる(LHCb方式)
- 多くの次世代実験において、LMRとIMRのレプトン対測定のパフォーマンスを見積もった研究が乏しい
 - 電子を使った測定は限界がちかい。

初期温度測定、LMRの質量変化の原因解明、カイラルミキシングの信号を検出には、より多くの統計、コンビナトリアルバックグランドの削除、HFレプトン

– ミューオン測定はまだまだ成熟していない。改善の余地あり。LMR、IMRレプトン対測定において、衝突点前方ミューオンには無限の可能性が広がっている。

